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ABSTRACT

A technique is described in which the two-point boundary-value-problem

(TPBVP) may be solved with the aid of interactive computer graphics. The parti-

cular TPBVP considered is the optimal electric propulsion space trajectory problem.

An appropriate two-dimensional projection of the TPBVP mapping, or trajectory, is

displayed on the computer's television screen, and a man-in-the-loop varies selected

trajectory starting conditions in the fashion of a nonlinear walk until the viewed tra-

jectory endpoint lies near a displayed target. Once global targeting is accomplished

in this manner, program internal logic can easily handle local targeting to strongly

solve the TPBVP.
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Introduction

This work was inspired by a desire to find an easy way of obtaining starting

solutions for optimal space trajectories, a problem which has plagued space tra-

jectory analysts for over a decade. The method of attack adopted here is to use an

accurate trajectory-generation algorithm in conjunction with the IBM 360 2250

graphic display system. In this approach, the starting conditions of the two-point-

boundary-value problem (TPBVP) are guessed, and in general the TPBVP mapping,

which is a space trajectory, will miss some specified target, such as the planet

Jupiter, by a considerable distance, for instance several astronomical units. Such

a trajectory constitutes a bad guess for the solution of the TPBVP, and consequently

most numerical TPBVP solution schemes will fail. If, however, a space trajectory

can be made to pass near its desired target in space (without regard to other TPBVP

end conditions), a sufficiently good TPBVP solution scheme, or iterator, will have

a much better chance to converge on a complete solution to the optimal electric pro-

pulsion trajectory problem, which has many end-conditions to be satisfied in addi-

tion to simple space-targeting.

The accurate trajectory-generation algorithm used is the HILTOP computer

program [1 ]. This program generates trajectories from input starting conditions

using numerical integration of the equations of motion for optimal rocket flight. The

trajectory endpoint is reached when the specified mission duration for that trajectory

is attained, and the endpoint will in general miss the target. The approach adopted

here is to guide the trajectory endpoint toward the target by observing the effect

which varying a given trajectory starting condition has on the trajectory endpoint on

a computer-generated television display. After this crude global targeting is accomp-

lished, program control may be entirely passed back to the HILTOP program for

the purpose of converging strongly and accurately on the desired solution. This con-

stitutes one basic method of facilitating TPBVP solutions.
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It is interesting to note in passing another entirely different, yet basic,

approach to solving a TPBVP, namely, forcing every trajectory to hit the tar-

get while sacrificing satisfaction of the required equations of motion. In this

instance, each trajectory violates physical reality until the converged solution

is obtained. This is the general approach of the Generalized Newton Raphson

methods, such as the one described in F2], and also of the Series Expansion

Approximation methods, such as the Chebychev polynomial approach described

in [31, in which even the converged solution is approximate. The former methods

tend to encounter severe convergence difficulties as the dimensionality of the pro-

blem increases, and the latter r ethods sacrifice some accuracy. Yet these

methods have the advantage of not requiring human intervention during execution

on the computer.

The computer graphics method of guiding the TPBVP toward a solution

has the disadvantage of requiring a man-in-the-loop, thereby consuming valuable

manhours. On the positive side, besides helping to solve the TPBVP, the computer

graphics method affords the experimenter or trajectory analyst a greatly-enhanced

amount of '"visibility" concerning his particular problem, thereby sharpening his

intuition.

Global Trajectory Searching Technique

This section sketches some of the mechanical details concerning the HILTOP

graphic display and the performance requirements of the man-in-the-loop. Typically,

the computer run is submitted to the computer in the batch mode, and the experi-

menter waits at a graphics terminal until it is de-queued and commences execution.

A basic case (e. g., a Jupiter flyby mission) is submitted as part of the run. At

execution commencement, some introductory words appear on the television screen,

the entire programmed function keyboard (PFK) lights up, and the execution pauses.

The experimenter then releases the program from the pause mode by punching any

PFK button, and some trajectory starting conditions are displayed (which he may
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jot down). All program control is currently accomplished via the PFK, and only

applicable PFK buttons are lighted at any given time. The currently-lighted buttons

together with the PFK overlay (shown in the Appendix) make the HILTOP graphic

system relatively easy to use.

The experimenter then allows the program to continue execution. The

ecliptic-projection of an interplanetary trajectory begins to appear on the screen,

and the experimenter watches the progress of the numerical integration. A symbol

for the sun appears at the screen's center, which corresponds to the center of the

solar system, and an X appears at the target's position. The experimenter notes

the trajectory endpoint and target miss distance. He may interrupt program exe-

cution at any time, transfer control back to the starting point, changeany subset

of the program's input quantities by means of the PFK, and then begin again to

allow the program to integrate a single trajectory or several trajectories. The

global targeting is accomplished by running a sequential set of single trajectories

while altering some selected trajectory starting parameter between each trajectory.

The experimenter may also allow the program's iterator to operate without in-

terruption. The iterator generates major (or nominal) trajectories, minor (or

neighboring) trajectories for constructing a partial derivative matrix for the TPBVP,

and also sub-major trajectories, all of which are described in 1J]. The experi-

menter views these trajectories on the screen, and may watch the Iterator attempt

to move the TPBVP toward a solution. He may also see a telescopic view of the no-

minal trajectory endpoint and the relation of all the neighboring trajectory endpoints

to the nominal endpoint in space. This allows him to detect possible erratic

neighboring trajectories and subsequently to decrease the size of the corresponding

independent variable perturbation step size via the PFK.

An inherent limitation of global targeting of a trajectory using computer

graphics is that the television screen constitutes a two-dimensional surface. This

means that only two dependent variables (such as the x-coordlnate and y-coordinate
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target miss components) out of the total N dependent variables of the TPBVP may

be conveniently satisfied by performing a nonlinear walk in selected trajectory

starting conditions, and the remaining N-2 dependent variables are ignored. While

it may be theoretically possible to monitor all N dependent variables somehow on

the television screen, it would be virtually impossible for a man-in-the-loop to per-

form a meaningful nonlinear walk in a given independent variable such as to force

N dependent variables toward a solution. Fortunately in the optimal rocket tra-

jectory problem, the x and y coordinate target miss distances are of relatively

great importance compared to most of the other dependent variables.

Software Development

A special graphics-version of the HILTOP computer program has been

created and is referred to as HILTOP/GRAPHIC. A considerable amount of pro-

gramming work was done to the HILTOP program in order to produce a graphics-

version with reasonably comprehensive execution supervision features. This con-

stituted most of the effort of this work. In addition to modifying many HILTOP

subroutines, eighteen (18) new subroutines were created, including such major

subroutines as a general-purpose PFK input editor routine, some floating-point

and integer to BCD conversion routines, and a trajectory-plotter routine.

Example Case

The following specific HILTOP/GRAPHIC run is given as an example of

how global trajectory targeting can aid the TPBVP solution.

A typical Mode A Jupiter flyby solar electric propulsion mission using

a Titan III B (core)/Centaur launch vehicle was simulated. The trajectory start-

ing conditions (TPBVP independent variables) are displayed in Table I along with

the initially-guessed values and the finally converged values. (Symbol definitions

and units are given in [1 I. ) The initial guesses resulted in a target miss distance

of 2.6 astronomical units (AU). (Jupiter is 5.2 AU from the sun.) Without
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computer graphics, the HILTOP program generated 669 trajectories (total) be-

fore arriving at a converged solution. Indeed, it is easy to conceive of instances

where the HILTOP program would never converge without graphics. With com-

puter graphics, the man-in-the-loop first tried Xi = 3.00, which resulted in a
1

trajectory closer to Jupiter but missing on the other side compared to the ori-

ginal trajectory. The man-in-the-loop therefore backed off to X1 = 2.80 and

obtained a trajectory satisfyingly close to Jupiter, having a miss distance of

0.14 AU. Control was turned back to HILTOP's iterator, which produced con-

vergence in 166 trajectories (total), representing a 75% machine time savings

relative to the original guess. Thus a simple nonlinear walk in just one of the

trajectory starting conditions A = (2.0, 3.0, 2.8) effected rapid global target-
1

ing of the trajectory.

Concluding Remarks

This work constitutes a preliminary assessment of global trajectory tar-

geting via computer graphics. This concept appears very promising as a valuable

tool for finding new optimal space trajectory solutions, and could conceivably be

employed to aid in the solution of other two-point boundary-value problems.
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TABLE I

INDEPENDENT VARIABLES FOR 1000 DAY JUPITER MISSION

Variable Initial Guess Converged Value
X 200 .41

2. 00 2.415

2-2.00 -2.624

x30.01 0. 021

k4  4.00 3.128

x5  0.00 0.157

6  -0.01 -0.008

-4 -4a 5 x 10 4.8 x 10
0

c 3 x 104 2.7 x 104

VwD 2000 2183

t1 -50 -53

t2  950 947

0 0
thrust 7

I .
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